Perceptual losses for self-supervised depth estimation
نویسندگان
چکیده
منابع مشابه
Self-Supervised Monocular Image Depth Learning and Confidence Estimation
Convolutional Neural Networks (CNNs) need large amounts of data with ground truth annotation, which is a challenging problem that has limited the development and fast deployment of CNNs for many computer vision tasks. We propose a novel framework for depth estimation from monocular images with corresponding confidence in a selfsupervised manner. A fully differential patch-based cost function is...
متن کاملSelf-Supervised Siamese Learning on Stereo Image Pairs for Depth Estimation in Robotic Surgery
INTRODUCTION Robotic surgery has become a powerful tool for performing minimally invasive procedures, providing advantages in dexterity, precision, and 3D vision, over traditional surgery. One popular robotic system is the da Vinci surgical platform, which allows preoperative information to be incorporated into live procedures using Augmented Reality (AR). Scene depth estimation is a prerequisi...
متن کاملSelf-Supervised Depth Learning for Urban Scene Understanding
As an agent moves through the world, the apparent motion of scene elements is (usually) inversely proportional to their depth.1 It is natural for a learning agent to associate image patterns with the magnitude of their displacement over time: as the agent moves, far away mountains don’t move much; nearby trees move a lot. This natural relationship between the appearance of objects and their mot...
متن کاملMultimodal dynamics: self-supervised learning in perceptual and motor systems
This thesis presents a self-supervised framework for perceptual and motor learning based upon correlations in different sensory modalities. The brain and cognitive sciences have gathered an enormous body of neurological and phenomenological evidence in the past half century demonstrating the extraordinary degree of interaction between sensory modalities during the course of ordinary perception....
متن کاملSelf-Adaptive Matching In Local Windows For Depth Estimation
This paper proposes a novel local stereo matching approach based on self-adapting matching window. We improve the accuracy of stereo matching in 3 steps. First, we integrate shape and size information, and construct robust minimum matching windows by applying a self-adapting method. Then, two matching cost optimization strategies are employed for handling both occlusion regions and image border...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1952/2/022040